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1. If f(0) = 0, we are done. So without loss of generality, let f(0) > 0.

Claim- f(x) < f(0) + x
2
∀x ∈ R

Proof-

For the sake of contradiction let ∃x0 > 0 s.t f(x0) > f(0) + x0

2

By LMVT, ∃c ∈ (0, x0) s.t

f ′(c) =
f(x0)− f(0)

x0 − 0

=⇒ f ′(c) >
f(0) + x0

2
− f(0)

x0

=
1

2

This is a contradiction. Our claim is proved.

Take any x > 2× f(0), call it x1 that would make f(0) + x1

2
< x1, then

f(x1) < f(0) +
x1

2
< x1

Now we can see that f(0) > 0 and f(x1) < x1.

Apply Intermediate Value Property on the function g(x) = f(x) − x, this is clearly continuous

with g(0) > 0 and g(x1) < 0

We know ∃x0 ∈ (0, x1) s.t g(x0) = x0.

Thus we have x0 such that f(x0) = x0

Similarly if f(0) < 0 we get some x1 < 0 and a x0 ∈ (0, x1) such that this holds.

2. WLOG, A ≤ B ≤ C. Rewriting the given equation using cos2A+ sin2A = 1, we get

3(cos2A+ cos2B + cos2C) = 3

⇐⇒ cos2A+ cos2B = sin2(A+B)

⇐⇒ cos2A+ cos2B = sin2A cos2B + sin2B cos2A+ 2 sinA cosA sinB cosB

⇐⇒ 2 cos2A cos2B = 2 sinA sinB cosA cosB

⇐⇒ sinA sinB = cosA cosB,

which shows that cos(A+B) = 0 =⇒ A+B = π/2 =⇒ C = π/2.

3. Clearly, f is a bounded function, since it is continuous and defined on a closed interval. Suppose

that |f(x)| ≤ M for some M > 0.

|f(x)| = |f(x)− f(0)| =
∣∣∣∣∫ x

0

f ′(t)dt

∣∣∣∣ ≤ ∫ x

0

|f ′(t)|dt ≤
∫ x

0

Mdt = Mx.

Note that the above inequality holds for every x ∈ [0, 1]. Using this new bound Mt on f(t), we



can again apply the same inequality as described above to get

f(x) ≤
∫ x

0

f(t)dt ≤ M
x2

2
.

Inductively, for every n ≥ 1, f(x) ≤ M
xn

n!
≤ M

n!
. Letting n → ∞, we get f(x) = 0 for all

x ∈ [0, 1].

4. Observe that, f (2)(z) = (z2)2 = z4, and by Induction, one can easily show that f (n)(z) =

(f (n−1)(z))2 = (z2
(n−1)

)2 = z2
n
.

Now, z has period n, will imply z2
n
= z, hence z2

n−1 = 1, i.e. z = e
iπ

2n−1 .

Let z ∈ S1, and z has period k (k < n). Say, n = qk + r Then,

z2
n
= (z2

qk
)2

r
= z2

r
. Now f (n)(z) = z ⇒ z2

r
= z, but r < k, hence r = 0

Hence, k|n. Now, if we call the number of complex numbers in S1 with period n as an, we can

conclude that, ∑
k|n

ak = 2n − 1

If n = pm for some prime p,
∑

k|pm ak =
∑

k|pm−1 ak + an = 2p
m−1 − 1 + apm = 2p

m − 1, which

implies apm = 2p
m − 2p

m−1

Now, if n = pmq for some different primes p and q,∑
k|pmq

ak =
∑

k|pm−1q

ak + apm + apmq = 2p
m−1q − 1 + 2p

m − 2p
m−1

+ apmq = 2p
mq − 1

Hence, apmq = 2p
mq − 2p

m−1q − 2p
m
+ 2p

m−1
.

Finally, if n = pmq2, ∑
k|pmq2

ak =
∑

k|pm−1q2

ak + apm + apmq + apmq2

= 2p
m−1q2 − 1 + 2p

m − 2p
m−1

+ 2p
mq − 2p

m−1q − 2p
m

+ 2p
m−1

+ apmq2 = 2p
mq2 − 1

Which implies, apmq2 = 2p
mq2 − 2p

m−1q2 − 2p
mq + 2p

m−1q

Plugging in p = 3,m = 4, q = 5, we have a2025 = 22025 − 2675 − 2405 + 2135

5. Given:
1

a
+

1

b
+

1

c
=

1

a+ b+ c

—

1

a
+

1

b
=

1

a+ b+ c
− 1

c
⇒ 1

a
+

1

b
=

−(a+ b)

(a+ b+ c)c

a+ b

ab
=

−(a+ b)

(a+ b+ c)c

(a+ b)

[
1

ab
+

1

(a+ b+ c)c

]
= 0

2



Take LCM of the terms inside:

(a+ b)

[
c(a+ b+ c) + ab

abc(a+ b+ c)

]
= 0 ⇒ (a+ b)

(
c2 + ac+ ab+ bc

abc(a+ b+ c)

)
= 0

So,
(a+ b)(c2 + ac+ ab+ bc)

abc(a+ b+ c)
= 0

Now factor the numerator:

(a+ b)(c2 + ac+ ab+ bc) = (a+ b)(b+ c)(c+ a)

So we get:
(a+ b)(b+ c)(c+ a)

abc(a+ b+ c)
= 0

This implies:

(a+ b)(b+ c)(c+ a) = 0 ⇒ a = −b or b = −c or c = −a

—

Let us assume a = −b. Then:

LHS =
1

ak
+

1

bk
+

1

ck
=

1

ak
+

1

(−a)k
+

1

ck

Since k is odd, (−a)k = −ak, so:

1

ak
− 1

ak
+

1

ck
=

1

ck

Now, the RHS:
1

(a+ b+ c)k
=

1

(a− a+ c)k
=

1

ck

Hence, LHS = RHS.

Like this, we can similarly show the identity holds for the other two cases:

b = −c and c = −a

6. Without loss of generality, we may assume that S contains only positive integers.

Let

S = {2ai3bi | ai, bi ∈ Z, ai, bi ≥ 0, 1 ≤ i ≤ 9}.

It suffices to show that there are 1 ≤ i1, i2, i3 ≤ 9 such that

ai1 + ai2 + ai3 ≡ bi1 + bi2 + bi3 ≡ 0 (mod 3).
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For n = 2a3b ∈ S, let’s call (a ( mod 3), b ( mod 3)) the type of n. Then there are 9 possible

types:

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2).

Let N(i, j) be the number of integers in S of type (i, j). We obtain 3 distinct integers whose

product is a perfect cube when

(1) N(i, j) ≥ 3 for some i, j,or

(2) N(i, 0)N(i, 1)N(i, 2) ̸= 0 for some i = 0, 1, 2,or

(3) N(0, j)N(1, j)N(2, j) ̸= 0 for some j = 0, 1, 2,or

(4) N(i1, j1)N(i2, j2)N(i3, j3) ̸= 0, where {i1, i2, i3} = {j1, j2, j3} = {0, 1, 2}

Assume that none of the conditions (1)∼(3) holds. Since N(i, j) ≤ 2 for all (i, j), there are at

least five N(i, j)’s that are nonzero. Furthermore, among those nonzero N(i, j)′s, no three have

the same i nor the same j. Using these facts, one may easily conclude that the condition (4)

should hold. (For example, if one places each nonzero N(i, j) in the (i, j)-th box of a regular

3× 3 array of boxes whose rows and columns are indexed by 0,1 and 2, then one can always find

three boxes, occupied by at least one nonzero N(i, j), whose rows and columns are all distinct.

This implies (4).)

7. Consider the angles of ∆ABC as ∠A,∠B,∠C and the sides opposite to this angles a, b, c respec-

tively.

Let the ball starts from a point P on the side AB with an angle α with AB and hit the side AC

at point Q and then hit the side BC at point R and then once again hit the side AB at point

P ′. Then from ∆PAQ, ∠AQP = π − α − A. Angle of incidence at Q = π/2− (π − α − A). So

angle of reflection at Q = π/2− (π−α−A),since angle of incidence = angle of reflection. Then

∠CQR = π/2− (angle of reflection at Q)= π−α−A. From ∆CQR,∠CRQ = π−∠CQR−C =

A + α − C. We can show that for the reflection at R, ∠BRP ′ = ∠CRQ = A + α − C. In

∆BRP ′,∠BP ′R = π−B−∠BRP ′ = π−α− (B +A−C). Let the reflected ray from point P ′

is X. Again from reflection at P ′, ∠AP ′X = ∠BP ′R = π − α − (B + A − C). For a triangular

path we want ∠QPA = ∠AP ′X =⇒ α = ∠C.

If we start the ball at an angle ∠C with side AB, then ∆APQ ∼ ∆ABC. Let AP = λb, then

by similarity AQ = λc. So CQ = b − λc. Again ∆CQR ∼ ∆ABC, so CR = b
a
(b − λc). Then

BR = a − CR = λ bc
a
. ∆BQP ′ ∼ ∆ABC, so BP ′ = λb. Since we want P = P ′, this implies
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BP ′ + PA = BA =⇒ 2λb = c =⇒ λ = c
2b
.

So if the starting point of the ball is point P (with starting ray PX) on AB such that AP = AB/2

and ∠APX = ∠ACB then there will be a triangular path for the ball.

8. First we show that for any positive integers x1, . . . , xn, we have (x1+1) · · · (xn+1) ≥ 2(x1+ · · ·+
xn) using induction on n. Suppose that the first k many ai’s are ones and every term beyond

that is > 1. Then,

a1a2 . . . an = ak+1ak+2 · · · an ≥ 2 ((ak+1 − 1) + (ak+2 − 1) + · · ·+ (an − 1)) = 2a1a2 · · · an − 2n.

This completes the proof. For equality, say an−1 = a, an = b. Then n − 2 + a + b = ab ⇒
(a− 1)(b− 1) = n− 1. Putting a + b = n + 2 ⇒ a− 1 + b− 1 = n, we can say a− 1 = 1, and

hence only equality case is {1, . . . 1, 2, n}
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